Problem Description
As to a permutation p1,p2,⋯,pn from 1 to n, it is uncomplicated for each 1≤i≤n to calculate (li,ri) meeting the condition that min(pL,pL+1,⋯,pR)=pi if and only if li≤L≤i≤R≤ri for each 1≤L≤R≤n.Given the positive integers n, (li,ri) (1≤i≤n), you are asked to calculate the number of possible permutations p1,p2,⋯,pn from 1 to n, meeting the above condition.The answer may be very large, so you only need to give the value of answer modulo 109+7.
Input
The input contains multiple test cases. For each test case: The first line contains one positive integer n, satisfying 1≤n≤106.The second line contains n positive integers l1,l2,⋯,ln, satisfying 1≤li≤i for each 1≤i≤n.The third line contains n positive integers r1,r2,⋯,rn, satisfying i≤ri≤n for each 1≤i≤n.It's guaranteed that the sum of n in all test cases is not larger than 3⋅106.Warm Tips for C/C++: input data is so large (about 38 MiB) that we recommend to use fread() for buffering friendly.
size_t fread(void *buffer, size_t size, size_t count, FILE *stream); // reads an array of count elements, each one with a size of size bytes, from the stream and stores them in the block of memory specified by buffer; the total number of elements successfully read is returned.
Output
For each test case, output " Case #x: y" in one line (without quotes), where x indicates the case number starting from 1 and y denotes the answer of corresponding case.
Sample Input
3
1 1 3
1 3 3
5
1 2 2 4 5
5 2 5 5 5
Sample Output
Case #1: 2
Case #2: 3
题意:对于一个由1~n组成的排列称为合法的,必须满足这样的条件: 有n个(li,ri),对于每个 i 必须满足 min(pL,pL+1,⋯,pR)=pi if and only if li≤L≤i≤R≤ri for each 1≤L≤R≤n.
现在给了n个(li,ri)求满足的排列有多少个。
思路:对于每个(li,ri),a[li-1]<a[i]>a[ri+1] ,并且a[i]是a[li]~a[ri]的最小值,那么可以想到:对于区间(1,n)一定有一个最小值,所以一定有一个区间是(1,n)(用X表示),那么这个最小值把区间X分成两部分U和V ,所以一定存在为U和V的区间,如果不存在,那么输出0,令f(X)表示符合条件的区间X的排列数,那么f(X)=f(U)*f(V)*C(U+V+1,U) 【注:C()表示组合数,U 表示区间U的大小】,所以我们只需要从区间(1,n)进行深搜即可,其中因为数据太大取模会用到逆元和组合数。
代码如下:
#include#include #include #include #include using namespace std;typedef long long LL;const int N=1e6+5;const LL mod=1e9+7;LL fac[N], Inv[N];/*int Scan()///输入外挂{ int res=0,ch,flag=0; if((ch=getchar())=='-') flag=1; else if(ch>='0'&&ch<='9') res=ch-'0'; while((ch=getchar())>='0'&&ch<='9') res=res*10+ch-'0'; return flag?-res:res;}*/namespace IO { const int MX = 4e7; //1e7占用内存11000kb char buf[MX]; int c, sz; void begin() { c = 0; sz = fread(buf, 1, MX, stdin); } inline bool read(int &t) { while(c < sz && buf[c] != '-' && (buf[c] < '0' || buf[c] > '9')) c++; if(c >= sz) return false; bool flag = 0; if(buf[c] == '-') flag = 1, c++; for(t = 0; c < sz && '0' <= buf[c] && buf[c] <= '9'; c++) t = t * 10 + buf[c] - '0'; if(flag) t = -t; return true; }}void Init(){ fac[0] = Inv[0] = fac[1] = Inv[1] = 1; for(int i=2; i s2.r; return s1.l